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1 Problem

Given a tree T, give an algorithm that either correctly computes a dominating set for T such that
every vertex in T has exactly one vertex from the dominating set in its open neighbourhood (The open
neighbourhood of a vertex contains all its neighbours) or decides that such a dominating set does not

exist.

2 About the problem

This problem is an NP-complete decision problem, and hence there may not be an efficient algorithm,
and only approximate algorithms can be found.

Please note that at multiple stages we could be having different valid nodes to select and the algorithm
would have to decide which node to select. This is the reason why it is also a decision problem.

3 Approach

Start from the leaf node and add its parent (having 2 or more leaf nodes) to the Dominating Set.

Given a tree, to ensure that we have a node in the dominating set from the neighbourhood of each
node we could do one of the following:

1. We can select the 3rd node from the current node.
2. We can select the next node.
3. We can select the 4th node from the current node.

Note that if there exists a node A such that more than 1 of its neighbouring nodes (B, C) have
more than 1 leaf nodes then the solution does not exist as in that case we will be required to select
both B and C (to cover the neighbourhood of the leaf nodes) and that would mean we are selecting
2 nodes from the neighbourhood of A, which is not feasible.

If we don’t get a solution by proceeding through the 1st step mentioned above, we then add the
leaf node itself to the dominating set and proceed to our algorithm further through the 2nd step
mentioned above.



4 Pseudo code

find_neighbours(node) { // using Breadth First Search
Return list of all neighbouring nodes
}

// for checking, if the neighbours of a node have already been covered or not
list_searcher (node_neighbours| |, covered_neighbours_set) {
if (no element in node_neighbours[] is present in covered_neighbours_set)
Return true
Else
Return false

}

Dominating set = [ |
covered_neighbours_set = [ ]

Start from any leaf node whose parent has two or more leaf nodes:
Add the parent of this leaf node to Dominating_set.
Add all the neighbours of this node to covered_neighbours_set.

V = parent node
For V not in covered_neighbours_set
{
if (list_searcher(find_neighbours(Vy43), covered_neighbours_set))
DS =DS+ Vi3
V=V
continue
Else if (list_searcher(find_neighbours(Vy41), covered neighbours_set))
DS =DS+ V4
V=V
continue
Else if (list_searcher(find_neighbours(V;,4), covered_neighbours_set))
DS =DS+Vjyyy
V ="Vji4
continue

If Dominating_set.length() + covered_neighbours_set.length() == Total number of Nodes:
print Dominating_set
break

}

If Dominating_set.length() + covered_neighbours_set.length() != Total number of Nodes:
print “Does not exist”




5 Recurrence Relation

Let DS ={........ v;} be the dominating set where v; is the last node added to the dominating set.

So, the required dominating set D.Sf;nq will become:

DS + v;y3, or
DS =<{DS+ Vi4+1, Or
DS + vigq

6 Time Complexity

Let the total number of searches that we will have to do be k searches in the covered_neighbours_set,
each of which takes O(n) time (using linear search).
So, the running time is nk.
Now for the BF'S in the function find_neighbours, we will have a complexity contribution of O(n 4+ m).
So, the total time complexity is:

n(n + m) + n2'°9k

Please note that k£ here is not a constant and is in-fact a variable.
So, the running time is actually (2/°9%)n (exactly like in 01 Knapsack problem) since the first part can be
ignored in comparison to the second part of the equation.

This running time is pseudo-polynomial running time.
This also shows that the problem is NP-Complete.

7 Proof of correctness

The algorithm can be proved using the proof for recurrence relation.

Claim: Let DS = {........ v; } be the Dominating Set where v; be the last node added to the Dominating
Set. We add either v;43 or v;41 or v;+4 to the Dominating Set.

Proof: We can prove the claim by using Contradiction.

Suppose v;1 is the node added in the partial solution where k = {N — {1,3,4}}
Consider two cases:-

Case 1: When k =2

If v;yo is added to the dominating set, it implies we have selected more than one node to the
Dominating set from the neighbourhood of v;4.

This does not give the required solution.

Case 2: When k > 4

For all k > 4, We get at least one vertex without selecting the vertex from its neighbourhood.

It implies this is a contradiction.

Also, the node selected can be the leaf node whose parent can have another (one or more) leaf
nodes.

The neighbourhood of the other leaf nodes contains only their parent. So, the required condition
will not be satisfied, as their parent is not selected in the dominating set.



To help decide between different possible nodes, we will be assigning priority to them. That is,
we will first try v;43, then vj11 and only then vj 4, the reasoning behind this being:

e If we are at a node, the farthest node we can go to such that exactly one neighbour of each of
the nodes on the path between them lies in the dominating set is v;3.

o If we cannot add v; 3 to the dominating set, we go to v; 41 because that is the second farthest
we can go to satisfy the required condition.

e If that is also not possible, we go to the 4th node.

Condition for NO solution:

Lemma: If at a given point of time, we encounter a node such that it has more than one neighbouring
node each having more than one leaf nodes, then the solution does not exist.

Proof: We can prove this by using contradiction.

Assuming that solution exists, then it would mean that we have to select both the neighbouring nodes
to cover all the neighbourhoods, but that would be a violation of our condition to have only one node
from each neighbourhood.

Hence, this is a contradiction, implying that our assumption was wrong. Hence, the lemma was correct.

8 Example

The workings of the algorithm can be understood through an example.




Here, let us start from the node j.

So, we make node h a part of the dominating set and add all its neighbours to the covered neighbours
list. Hence,
covered_neighbours_set = {j,1, e}

dominating_set = {h}
Now, on going to v;43, we can select any of the nodes [/, g, d.
Since we already have a node to select from v;,3, we do not try other cases.
Let us say we select [ (we could select any of the 3). We add the neighbours of [ to the list and [ to the

dominating set list.
covered_neighbours_set = {j,i,e, k}

dominating_set = {h,l}
Now, we go to v;43 again, and our options are {f, d}, but both are neighbours of e, whose neighbourhood
is already covered.
So, we now try v;y1, which gives us k, which is a neighbour of e.
So, we cannot select k either. Now we go to vj44, which gives us 2 options a and g. Since neither of the
neighbours are covered, we can select either of them.

Let us say we select g. So,
covered_neighbours_set = {j,i,e, k, f}

dominating_set = {h,l, g}

Now, we go to vj43, but similar to last time, we cannot select anything,and same is the case for v;41. So,
we go to vj44 and we see that we can select the node a. So,

covered_neighbours_set = {j,i,e,k, f,b,c,d}
dominating_set = {h,l,g,a}
Here we see that

len(Dominating_set) 4 len(covered_neighbours_set) = total nodes in the tree

Hence, the for loop exits here and we have our solution.



