
Design and Analysis of Algorithms

Implementation Project

Number Breaking

An Algorithmic Approach

By

IMT2019064 Pratik Ratnadeep Ahirrao

IMT2019084 Shrey Tripathi

1 Problem Statement

Every number is multiplication of some prime numbers. A prime number is a number which is only

divided by 1 and itself. Here, we are given a number n. We have to find the prime numbers whose

multiplication makes this number.

For example, 12 is multiplication of prime numbers 2 and 3. 15 is multiplication of 3 and 5.

Input: First line contains the number of test cases T . Then, each line contains a single integer n.

Constraints: 1 ≤ T ≤ 1000, 2 ≤ n ≤ 1000000.

Output: For each test case, we print a single line which contains the test case number and the

prime numbers in ascending order separated by a single space whose multiplication makes this

number.

Example:

Input:

3

12

42

84

Output:

Case 1 : 2 3

Case 2 : 2 3 7

Case 3 : 2 3 7

2 Approach

We use the Sieve of Eratosthenes to find all the prime numbers which divide the given n and are

less than or equal to n.

This can be done as follows:-

1. We first create a boolean array isPrime of size n + 1 that checks whether a given number in

the range [0, n] is prime or not.

2. We initialize all indices of the array isPrime to true, except indices 0 and 1, since isPrime[0] =

false, and isPrime[1] = false.

1

3. Looping the index (say p), from 2, to
√
n, we mark all the multiples of those indices as false,

since they are not prime, and the indices themselves as true, since they are prime.

After marking all the multiples of p, it takes the value of the smallest prime number greater

than p that is not marked.

4. If no such number exists, we stop. Otherwise, p now will be this new number. We repeat the

same above process for this new p.

5. Finally we print the prime numbers which divide n.

Note: It is sufficient to mark the numbers in step 3 starting from p2, as all the smaller multiples of

p will have already been marked at that point. This means that the algorithm can be terminated

when p2 is greater than n.

2

3 Pseudocode

let isPrime be an array of Boolean values, indexed by integers 2 to n.

Let there be Output list where we store our results.

Set all values of isPrime to True initially.

Function Sieve(n):

for i← 2 to
√
n do

if isPrime[i] == True then

for j ← i2, i2 + i, i2 + 2i, i2 + 3i, . to n do

isPrime[i] == False

end

end

for p← 2 to n do

if isPrime[i] == True & n % p == 0 then

Add p to the Output list.

end

end

end

return Output

4 Time complexity

The overall complexity of the algorithm is O(n log logn).

We can observe that the algorithm will perform n
p operations for every prime p ≤ n in the inner

loop.

So, the number of times the loop runs is equal to

n
2 + n

3 + n
7 +

that is,

n(12 + 1
3 + 1

7 +)

3

Now, the sum of reciprocals of primes p ≤ n asymptotically equals O(log log n). [Reference here]

Hence, the overall complexity of the algorithm as O(n log log n).

5 Proof of correctness

• We have to prove that the Output array contains only prime numbers, all of which are factors

of n. This can be proved using contradiction.

• Assume that a particular number in the Output array is marked as false, i.e. it is non-prime

(or composite). Since it is composite, it must have been marked as a multiple of some other

smaller prime number according to the algorithm.

• It implies that it should not be present in the output array.

• This contradicts the fact that it is present in the output array. Hence, our assumption was

wrong.

Note: Some numbers may be marked more than once.

Note: There is also a linear time algorithm for Sieve of Eratosthenes. Although this running time

of O(n) is better than O(n log log n) of the classic Sieve of Eratosthenes, the difference between

them is not so big. In practice that means just double difference in speed, and the optimized

versions of the sieve run as fast as this algorithm.

6 Example

Suppose n equals 25.

We generate a list of numbers from 2 to 25.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

We start with the first number in the list i.e. 2, and cross out every multiple of 2 in the list except

2.

2 3 �4 5 �6 7 �8 9 ��10 11 ��12 13 ��14 15 ��16 17 ��18 19 ��20 21 ��22 23 ��24 25

Now, next uncrossed number in the list after 2 is 3. We cross out every multiple of 3 in the list

except 3.

4

https://math.stackexchange.com/a/674909

2 3 �4 5 �6 7 �8 �9 ��10 11 ��12 13 ��14 ��15 ��16 17 ��18 19 ��20 ��21 ��22 23 ��24 25

Repeating the above process for the remaining elements in the list, we get:

2 3 5 7 11 17 19 23

Hence, {2, 3, 5, 7, 11, 17, 19, 23} are the prime numbers that are less than n.

From this list, if a prime number divides n, we add it to the Output array

Hence, the final output is :

{5}

7 References

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

5

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

	Problem Statement
	Approach
	Pseudocode
	Time complexity
	Proof of correctness
	Example
	References

